Indian Journal of Inflammation Research

"Understanding Inflammation, Enhancing Health"

Welcome to the Indian Journal of Inflammation Research (IJIR), where knowledge fuels healing. Our platform provides a vital hub for researchers, clinicians, and policymakers to explore the multifaceted aspects of inflammation and its impact on human health. Delve into our curated selection of articles, studies, and reviews aimed at deepening our understanding of inflammation and developing innovative strategies for prevention and treatment.

Submit Article

Plasticity of Th17 and Tregs and its clinical importance as therapeutic target in inflammatory bowel disease

Authors

  • Neeraja Kulkarni National Centre for Cell Science, Pune, MH-411007, India
  • Sandip Ashok Sonar National Centre for Cell Science, Pune, MH-411007, India
  • Girdhari Lal National Centre for Cell Science, Pune, MH-411007, India

Keywords:

Autoimmunity, gut inflammation, Th17 cells, Tregs, mucosal tolerance, ulcerative colitis, Crohn’s disease

Abstract

The gut immune system is very complex and a single layer of the epithelial barrier along the gastrointestinal tract prevents the evasion of various extracellular commensal and pathogenic microorganisms in the gut mucosa. The inflammatory bowel disease (IBD) consists of ulcerative colitis (UC) and Crohn’s disease (CD). The cause of IBD is thought to be associated with genetic, epigenetic, environmental factors, dietary habits and gut microbiota. Immunologically, the effector CD4+ T cells such as Th1, Th17, and regulatory CD+ T cells play an important role in the pathogenesis of IBD.  During gut inflammation and autoimmunity, these cells show phenotypic and functional plasticity, and differentiate into other lineages as well as have mixed-lineage phenotypes such as Th1-Th17, Th1-Treg, and Th17-Treg. The present review discusses the intrinsic and extrinsic factors that affect the cellular and molecular plasticity of Th17 and Treg, their clinical importance, and how plasticity and reprogramming of these cells can be targeted to control the IBD.

References

Kulkarni N, Pathak M, Lal G. Role of chemokine receptors and intestinal epithelial cells in the mucosal inflammation and tolerance. J Leukoc Biol 2017; 101(2): 377-394.

Capitan-Canadas F, Ocon B, Aranda CJ, Anzola A, Suarez MD, Zarzuelo A et al. Fructooligosaccharides exert intestinal anti-inflammatory activity in the CD4+ CD62L+ T cell transfer model of colitis in C57BL/6J mice. Eur J Nutr 2016; 55(4): 1445-54.

Eri R, McGuckin MA, Wadley R. T cell transfer model of colitis: a great tool to assess the contribution of T cells in chronic intestinal inflammation. Methods Mol Biol 2012; 844: 261-75.

Yoshie O, Imai T, Nomiyama H. Novel lymphocyte-specific CC chemokines and their receptors. Journal of leukocyte biology 1997; 62(5): 634-44.

Kedia S, Ahuja V. Epidemiology of Inflammatory Bowel Disease in India: The Great Shift East. Inflammatory Intestinal Diseases 2017; 2(2): 102-115.

Makharia GK, Ramakrishna BS, Abraham P, Choudhuri G, Misra SP, Ahuja V et al. Survey of inflammatory bowel diseases in India. Indian J Gastroenterol 2012; 31(6): 299-306.

Nelson RT, Boyd J, Gladue RP, Paradis T, Thomas R, Cunningham AC et al. Genomic organization of the CC chemokine mip-3alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization. Genomics 2001; 73(1): 28-37.

Kanhere A, Hertweck A, Bhatia U, Gokmen MR, Perucha E, Jackson I et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nature communications 2012; 3: 1268.

Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 2009; 114(18): 3727-35.

Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal immunology 2009; 2(5): 403-11.

Curtis MM, Way SS. Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 2009; 126(2): 177-85.

Ivanov, II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121-33.

Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2): 233-40.

Lochner M, Berard M, Sawa S, Hauer S, Gaboriau-Routhiau V, Fernandez TD et al. Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells. J Immunol 2011; 186(3): 1531-7.

Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 2015; 349(6251): 989-93.

Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 2015; 349(6251): 993-7.

Ivanov, II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139(3): 485-98.

Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331(6015): 337-41.

Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 2014; 5(3): 333-9.

Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012; 484(7395): 514-8.

Gagliardi MC, Teloni R, Mariotti S, Bromuro C, Chiani P, Romagnoli G et al. Endogenous PGE2 promotes the induction of human Th17 responses by fungal ss-glucan. J Leukoc Biol 2010; 88(5): 947-54.

Ueno A, Jeffery L, Kobayashi T, Hibi T, Ghosh S, Jijon H. Th17 plasticity and its relevance to inflammatory bowel disease. Journal of autoimmunity 2017; DOI: 10.1016/j.jaut.2017.12.004.

Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-64.

Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4): 330-6.

Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4): 337-42.

Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057-61.

Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1): 68-73.

Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. The Journal of clinical investigation 2000; 106(12): R75-81.

Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1): 20-1.

Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27(1): 18-20.

Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. The Journal of experimental medicine 2012; 209(10): 1723-42.

Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34(5): 794-806.

Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK et al. Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America 2014; 111(36): 13145-50.

Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(27): 12204-9.

Li MO, Wan YY, Flavell RA. T Cell-Produced Transforming Growth Factor-beta1 Controls T Cell Tolerance and Regulates Th1- and Th17-Cell Differentiation. Immunity 2007; 26(5): 579-91.

Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008; 28(4): 546-58.

Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271-5.

Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 2004; 199(11): 1479-89.

Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 2016; 351(6275): 858-63.

Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 2008; 29(1): 114-26.

Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007; 204(8): 1757-64.

Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011; 35(1): 109-22.

Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182(1): 259-73.

Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. European journal of immunology 2007; 37(9): 2378-89.

Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity 2013; 38(3): 414-23.

Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007; 27(5): 786-800.

Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 2015; 528(7580): 132-6.

Takahashi R, Yoshimura A. SOCS1 and regulation of regulatory T cells plasticity. J Immunol Res 2014; 943149(10): 15.

Li X, Liang Y, LeBlanc M, Benner C, Zheng Y. Function of a Foxp3 cis-Element in Protecting Regulatory T Cell Identity. Cell 2014; 158(4): 734-48.

Mao K, Chen S, Chen M, Ma Y, Wang Y, Huang B et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 2013; 23(2): 201-12.

Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008; 9(2): 194-202.

Xu L, Kitani A, Stuelten C, McGrady G, Fuss I, Strober W. Positive and negative transcriptional regulation of the Foxp3 gene is mediated by access and binding of the Smad3 protein to enhancer I. Immunity 2010; 33(3): 313-25.

Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 2012; 482(7385): 395-9.

Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(13): 5919-24.

Morikawa H, Ohkura N, Vandenbon A, Itoh M, Nagao-Sato S, Kawaji H et al. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America 2014; 111(14): 5289-94.

Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 2012; 37(5): 785-99.

Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the Inheritance of Regulatory T Cell Identity by a cis Element in the Foxp3 Locus. Cell 2014; 158(4): 749-63.

Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446(7136): 685-9.

Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M et al. Foxp3(+) T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal immunology 2016; 9(2): 444-57.

Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 2008; 181(9): 5948-55.

Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nature immunology 2014; 15(11): 1070-8.

Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 2013; 38(3): 581-95.

McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012; 483(7389): 345-9.

Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317(5835): 256-60.

Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52(1): 65-70.

Izcue A, Hue S, Buonocore S, Arancibia-Cárcamo CV, Ahern PP, Iwakura Y et al. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 2008; 28(4): 559-570.

Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L et al. Regulation of inflammatory responses by IL-17F. Journal of Experimental Medicine 2008; 205(5): 1063-1075.

Blaschitz C, Raffatellu M. Th17 cytokines and the gut mucosal barrier. Journal of clinical immunology 2010; 30(2): 196-203.

Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Seminars in immunology 2013; 25(4): 305-12.

Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annual review of immunology 2009; 27: 485-517.

Luchtman DW, Ellwardt E, Larochelle C, Zipp F. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: current and future developments. Cytokine & growth factor reviews 2014; 25(4): 403-413.

Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235-238.

Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24(2): 179-189.

Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 2007; 448(7152): 484-487.

Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448(7152): 480-483.

Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature immunology 2007; 8(9): 967-974.

Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121-1133.

Tsukamoto H, Senju S, Matsumura K, Swain SL, Nishimura Y. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nature communications 2015; 6: 6702.

Xu J, Yang Y, Qiu G, Lal G, Wu Z, Levy DE et al. c-Maf regulates IL-10 expression during Th17 polarization. J Immunol 2009; 182(10): 6226-36.

Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K et al. Interleukin-23-induced transcription factor Blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 2016; 44(1): 131-142.

McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell–mediated pathology. Nature immunology 2007; 8(12): 1390-1397.

McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nature immunology 2009; 10(3): 314-324.

Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A et al. Induction and molecular signature of pathogenic TH17 cells. Nature immunology 2012; 13(10): 991-999.

Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ, Konkel JE et al. Generation of pathogenic TH17 cells in the absence of TGF-[beta] signalling. Nature 2010; 467(7318): 967-971.

de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. Journal of Experimental Medicine 2008; 205(7): 1543-1550.

Liu X, Lee YS, Yu C-R, Egwuagu CE. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. The Journal of Immunology 2008; 180(9): 6070-6076.

Harris TJ, Grosso JF, Yen H-R, Xin H, Kortylewski M, Albesiano E et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. The Journal of Immunology 2007; 179(7): 4313-4317.

Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010; 32(5): 605-615.

Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010; 32(5): 605-15.

Ise W, Kohyama M, Schraml BU, Zhang T, Schwer B, Basu U et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature immunology 2011; 12(6): 536-543.

Schraml BU, Hildner K, Ise W, Lee W-L, Smith WA-E, Solomon B et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 2009; 460(7253): 405-409.

Brüstle A, Heink S, Huber M, Rosenplänter C, Stadelmann C, Yu P et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature immunology 2007; 8(9): 958-966.

Li P, Spolski R, Liao W, Wang L, Murphy TL, Murphy KM et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 2012; 490(7421): 543-546.

Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F et al. A validated regulatory network for Th17 cell specification. Cell 2012; 151(2): 289-303.

Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y et al. Control of T H 17/T reg balance by hypoxia-inducible factor 1. Cell 2011; 146(5): 772-784.

Collins A, Littman DR, Taniuchi I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nature reviews Immunology 2009; 9(2): 106-115.

Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17–producing T cells. Nature immunology 2008; 9(11): 1297-1306.

Esser C, Rannug A, Stockinger B. The aryl hydrocarbon receptor in immunity. Trends in immunology 2009; 30(9): 447-454.

Beischlag TV, Morales JL, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Critical Reviews™ in Eukaryotic Gene Expression 2008; 18(3).

Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453(7191): 106-109.

Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. Journal of Experimental Medicine 2009; 206(1): 43-49.

Liu XK, Lin X, Gaffen SL. Crucial role for nuclear factor of activated T cells in T cell receptor-mediated regulation of human interleukin-17. Journal of Biological Chemistry 2004; 279(50): 52762-52771.

Gomez-Rodriguez J, Sahu N, Handon R, Davidson TS, Anderson SM, Kirby MR et al. Differential expression of interleukin-17A and-17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 2009; 31(4): 587-597.

Ghosh S, Koralov SB, Stevanovic I, Sundrud MS, Sasaki Y, Rajewsky K et al. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences 2010; 107(34): 15169-15174.

Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nature immunology 2007; 8(9): 931-41.

Nakamura K, Kitani A, Strober W. Cell contact–dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface–bound transforming growth factor β. Journal of Experimental Medicine 2001; 194(5): 629-644.

Das J, Ren G, Zhang L, Roberts AI, Zhao X, Bothwell AL et al. Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. Journal of Experimental Medicine 2009; 206(11): 2407-2416.

Brucklacher-Waldert V, Carr EJ, Linterman MA, Veldhoen M. Cellular Plasticity of CD4+ T Cells in the Intestine. Frontiers in immunology 2014; 5: 488.

Kulkarni N, Meitei HT, Sonar SA, Sharma PK, Mujeeb VR, Srivastava S et al. CCR6 signaling inhibits suppressor function of induced-Treg during gut inflammation. J Autoimmun 2018; 88:121-130.

Sethi A, Kulkarni N, Sonar S, Lal G. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance. Front Genet 2013; 4: 8.

Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+ CD25− Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. The Journal of Immunology 2007; 178(11): 6725-6729.

Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008; 29(1): 44-56.

Lal G, Yin N, Xu J, Lin M, Schroppel S, Ding Y et al. Distinct inflammatory signals have physiologically divergent effects on epigenetic regulation of foxp3 expression and treg function. Am J Transplant 2011; 11(2): 203-14.

Koenen HJ, Smeets RL, Vink PM, Van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17–producing cells. Blood 2008; 112(6): 2340-2352.

Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C et al. IL-17–producing human peripheral regulatory T cells retain suppressive function. Blood 2009; 113(18): 4240-4249.

Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20(1): 62-8.

Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflammatory bowel diseases 2013; 19(12): 2522-2534.

Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17–producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 2011; 140(3): 957-965.

DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16(3): 149-63.

Ardizzone S, Bevivino G, Monteleone G. Mongersen, an oral Smad7 antisense oligonucleotide, in patients with active Crohn’s disease. Therap Adv Gastroenterol 2016; 9(4): 527-32.

Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. The New England journal of medicine 2015; 372(12): 1104-13.

Coskun M, Vermeire S, Nielsen OH. Novel Targeted Therapies for Inflammatory Bowel Disease. Trends Pharmacol Sci 2017; 38(2): 127-142.

Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D et al. Corrigendum: aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nature immunology 2014; 15(1): 109.

Raffin C, Pignon P, Celse C, Debien E, Valmori D, Ayyoub M. Human memory Helios− FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1β by downregulating their suppressor functions. The Journal of Immunology 2013; 191(9): 4619-4627.

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491(7422): 119-24.

Basu R, Whitley SK, Bhaumik S, Zindl CL, Schoeb TR, Benveniste EN et al. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nature immunology 2015; 16(3): 286-95.

Bonovas S, Lytras T, Nikolopoulos G, Peyrin-Biroulet L, Danese S. Systematic review with network meta-analysis: comparative assessment of tofacitinib and biological therapies for moderate-to-severe ulcerative colitis. Alimentary pharmacology & therapeutics 2017.

Argollo M, Fiorino G, Hindryckx P, Peyrin-Biroulet L, Danese S. Novel therapeutic targets for inflammatory bowel disease. J Autoimmun 2017; 85: 103-116.

Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut 2017; 66(2): 199-209.

Panes J, Vermeire S, Lindsay JO, Sands BE, Su C, Friedman G et al. Tofacitinib in Patients with Ulcerative Colitis: Health-Related Quality of Life in Phase 3 Randomised Controlled Induction and Maintenance Studies. J Crohns Colitis 2018; 12(2): 145-156.

Vermeire S, Schreiber S, Petryka R, Kuehbacher T, Hebuterne X, Roblin X et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 2017; 389(10066): 266-275.

Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B et al. Phenotypic and functional features of human Th17 cells. Journal of Experimental Medicine 2007; 204(8): 1849-1861.

Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8(6): 639-46.

Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO et al. Late developmental plasticity in the T helper 17 lineage. Immunity 2009; 30(1): 92-107.

Harbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proceedings of the National Academy of Sciences 2015; 112(22): 7061-7066.

D’Haens G, Sandborn WJ, Colombel JF, Rutgeerts P, Brown K, Barkay H et al. A phase II study of laquinimod in Crohn’s disease. Gut 2015; 64(8): 1227-35.

Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012; 61(12): 1693-700.

Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY, Landers C et al. A Randomized, Double-Blind, Placebo-Controlled Phase 2 Study of Brodalumab in Patients With Moderate-to-Severe Crohn’s Disease. Am J Gastroenterol 2016; 111(11): 1599-1607.

Kaser A. Not all monoclonals are created equal - lessons from failed drug trials in Crohn’s disease. Best Pract Res Clin Gastroenterol 2014; 28(3): 437-49.

Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204(8): 1849-61.

Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflammatory bowel diseases 2013; 19(12): 2522-34.

Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 2011; 140(3): 957-65.

Sonar SA, Lal G. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity. Frontiers in immunology 2017; 8: 1695.

Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446): 513-7.

Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012; 13(10): 991-9.

Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. The New England journal of medicine 2016; 375(20): 1946-1960.

Singh S, Kroe-Barrett RR, Canada KA, Zhu X, Sepulveda E, Wu H et al. Selective targeting of the IL23 pathway: Generation and characterization of a novel high-affinity humanized anti-IL23A antibody. MAbs 2015; 7(4): 778-91.

Feagan BG, Sandborn WJ, D’Haens G, Panes J, Kaser A, Ferrante M et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 2017; 389(10080): 1699-1709.

Sato W, Aranami T, Yamamura T. Cutting edge: Human Th17 cells are identified as bearing CCR2+CCR5- phenotype. J Immunol 2007; 178(12): 7525-9.

Singh SP, Zhang HH, Foley JF, Hedrick MN, Farber JM. Human T cells that are able to produce IL-17 express the chemokine receptor CCR6. J Immunol 2008; 180(1): 214-21.

Lim HW, Lee J, Hillsamer P, Kim CH. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol 2008; 180(1): 122-9.

Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 2009; 30(3): 458-69.

Wang C, Kang SG, Lee J, Sun Z, Kim CH. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal immunology 2009; 2(2): 173-83.

Lee AY, Eri R, Lyons AB, Grimm MC, Korner H. CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil? Frontiers in immunology 2013; 4: 194.

Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 2008; 181(12): 8391-401.

Kulkarni N, Lal G. Non-chemotactic function of chemokine receptor CCR6 in the differentiation and function of Th17 and Treg cells. Cytokine 2016; 87: 156-157.

Kulkarni N, Lal G. CCR6 intrinsic signaling promotes Th17 cell differentiation during autoimmunity. Eur J Immunol 2016; 46(Suppl1): 89.

Katchar K, Kelly CP, Keates S, O’Brien M J, Keates AC. MIP-3alpha neutralizing monoclonal antibody protects against TNBS-induced colonic injury and inflammation in mice. American journal of physiology 2007; 292(5): G1263-71.

Robert R, Juglair L, Lim EX, Ang C, Wang CJH, Ebert G et al. A fully humanized IgG-like bispecific antibody for effective dual targeting of CXCR3 and CCR6. PLoS One 2017; 12(9): e0184278.

Getschman AE, Imai Y, Larsen O, Peterson FC, Wu X, Rosenkilde MM et al. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017; 114(47): 12460-12465.

Robert R, Ang C, Sun G, Juglair L, Lim EX, Mason LJ et al. Essential role for CCR6 in certain inflammatory diseases demonstrated using specific antagonist and knockin mice. JCI Insight 2017; 2(15).

Nielsen OH, Li Y, Johansson-Lindbom B, Coskun M. Sphingosine-1-Phosphate Signaling in Inflammatory Bowel Disease. Trends in molecular medicine 2017; 23(4): 362-374.

Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 2008; 9(1): 42-53.

Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 2010; 11(11): 1047-56.

Peyrin-Biroulet L, Christopher R, Behan D, Lassen C. Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmunity reviews 2017; 16(5): 495-503.

Sandborn WJ, Feagan BG, Wolf DC, D’Haens G, Vermeire S, Hanauer SB et al. Ozanimod Induction and Maintenance Treatment for Ulcerative Colitis. The New England journal of medicine 2016; 374(18): 1754-62.

Aroniadis OC, Brandt LJ. Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol Hepatol (N Y) 2014; 10(4): 230-7.

Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Alimentary pharmacology & therapeutics 2017; 46(3): 213-224.

Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015; 149(1): 102-109 e6.

Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology 2015; 149(1): 110-118 e4.

Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 2017; 389(10075): 1218-1228.

Netz U, Carter J, Eichenberger MR, Feagins K, Galbraith NJ, Dryden GW et al. Plasma microRNA Profile Differentiates Crohn’s Colitis From Ulcerative Colitis. Inflammatory bowel diseases 2017; 24(1): 159-165.

Schaefer JS, Attumi T, Opekun AR, Abraham B, Hou J, Shelby H et al. MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC immunology 2015; 16: 5.

Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis 2012; 6(9): 900-4.

Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4(+) T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8(12).

Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT et al. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest 2017; 127(10): 3702-3716.

Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol 2018; 15(1): 39-49.

Danese S, Fiocchi C. Ulcerative colitis. The New England journal of medicine 2011; 365(18): 1713-25.

Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet 2012; 380(9853): 1590-605.

Neurath MF. Cytokines in inflammatory bowel disease. Nature reviews. Immunology 2014; 14(5): 329-42.

van der Heide F, Dijkstra A, Weersma RK, Albersnagel FA, van der Logt EM, Faber KN et al. Effects of active and passive smoking on disease course of Crohn’s disease and ulcerative colitis. Inflammatory bowel diseases 2009; 15(8): 1199-207.

Bastida G, Beltran B. Ulcerative colitis in smokers, non-smokers and ex-smokers. World journal of gastroenterology : WJG 2011; 17(22): 2740-7.

Andersson RE, Olaison G, Tysk C, Ekbom A. Appendectomy and protection against ulcerative colitis. The New England journal of medicine 2001; 344(11): 808-14.

Kaplan GG, Jackson T, Sands BE, Frisch M, Andersson RE, Korzenik J. The risk of developing Crohn’s disease after an appendectomy: a meta-analysis. The American journal of gastroenterology 2008; 103(11): 2925-31.

Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. The American journal of gastroenterology 2011; 106(4): 563-73.

Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflammatory bowel diseases 2005; 11(2): 154-63.

Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157(3): 1261-70.

Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005; 129(2): 550-64.

Yu J, He S, Liu P, Hu Y, Wang L, Wang X et al. Interleukin21 promotes the development of ulcerative colitis and regulates the proliferation and secretion of follicular T helper cells in the colitides microenvironment. Mol Med Rep 2015; 11(2): 1049-56.

Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 2009; 137(5): 1736-45.

Sarra M, Monteleone I, Stolfi C, Fantini MC, Sileri P, Sica G et al. Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflammatory bowel diseases 2010; 16(8): 1332-9.

Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 2014; 15(7): 676-86.

Leung JM, Davenport M, Wolff MJ, Wiens KE, Abidi WM, Poles MA et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal immunology 2014; 7(1): 124-33.

Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. The Journal of experimental medicine 2002; 195(9): 1129-43.

Takayama T, Kamada N, Chinen H, Okamoto S, Kitazume MT, Chang J et al. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 2010; 139(3): 882-92, 892 e1-3.

Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011; 208(6): 1127-33.

Pastorelli L, Garg RR, Hoang SB, Spina L, Mattioli B, Scarpa M et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(17): 8017-22.

Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(43): 18581-6.

McNamee EN, Masterson JC, Jedlicka P, McManus M, Grenz A, Collins CB et al. Interleukin 37 expression protects mice from colitis. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(40): 16711-6.

Danese S, Rudzinski J, Brandt W, Dupas JL, Peyrin-Biroulet L, Bouhnik Y et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut 2015; 64(2): 243-9.

Spiess C, Bevers J, 3rd, Jackman J, Chiang N, Nakamura G, Dillon M et al. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. The Journal of biological chemistry 2013; 288(37): 26583-93.

Reinisch W, de Villiers W, Bene L, Simon L, Racz I, Katz S et al. Fontolizumab in moderate to severe Crohn’s disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflammatory bowel diseases 2010; 16(2): 233-42.

Halloran B, Chang J, Shih DQ, McGovern D, Famulski K, Evaschesen C et al. Molecular patterns in human ulcerative colitis and correlation with response to infliximab. Inflammatory bowel diseases 2014; 20(12): 2353-63.

Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 2000; 119(6): 1461-72.

Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Molecular therapy : the journal of the American Society of Gene Therapy 2012; 20(4): 870-6.

Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. The New England journal of medicine 2012; 367(16): 1519-28.

Downloads

Published

2018-03-23

Issue

Section

Articles