Indian Journal of Inflammation Research

"Understanding Inflammation, Enhancing Health"

Welcome to the Indian Journal of Inflammation Research (IJIR), where knowledge fuels healing. Our platform provides a vital hub for researchers, clinicians, and policymakers to explore the multifaceted aspects of inflammation and its impact on human health. Delve into our curated selection of articles, studies, and reviews aimed at deepening our understanding of inflammation and developing innovative strategies for prevention and treatment.

Submit Article

Multicellular and multimolecular immune interactions in the transplantation tolerance and rejection

Authors

  • Shilpi National Centre for Cell Science, Pune, MH-411007, India
  • Girdhari Lal National Centre for Cell Science, Pune, MH-411007, India

Keywords:

Organ transplantation, Immune tolerance, costimulatory molecules, Immunosuppression, graft rejection

Abstract

Transplantation tolerance remains the paramount goal for achieving long-term allograft survival. Several chemotherapeutic drugs are in use to prolong allograft survival, but its side effects and toxicity limits its clinic application. Transplantation tolerance requires complex cellular and molecular interaction between immune cells and stromal cells in the secondary lymphoid tissues. Early interaction of these cells decides the fate of generation and maintenance of tolerance. The role of adaptive immunity (T cells and B cells) in the inflammation and tolerance are well established, and new cellular and molecular interactions are evolving with time. In this review, we discussed the importance of innate and adaptive immune cells and how their interactions contribute to transplantation tolerance or rejection. We also discussed how these cellular and molecular interactions had been explored to control the inflammatory reactions and promote the survival of allogenic grafts in the various transplantation setting.

References

Watson CJ, Dark JH. Organ transplantation: historical perspective and current practice. British journal of anaesthesia 2012; 108 Suppl 1: i29-42.

Grinyo JM. Why is organ transplantation clinically important? Cold Spring Harbor perspectives in medicine 2013; 3(6).

Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World journal of transplantation 2015; 5(2): 52-67.

Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplantation proceedings 2008; 40(10): 3279-3288.

Cozzi E, Colpo A, De Silvestro G. The mechanisms of rejection in solid organ transplantation. Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis 2017; 56(4): 498-505.

Benichou G. Direct and indirect antigen recognition: the pathways to allograft immune rejection. Frontiers in bioscience : a journal and virtual library 1999; 4: D476-480.

Scozzi D, Ibrahim M, Menna C, Krupnick AS, Kreisel D, Gelman AE. The Role of Neutrophils in Transplanted Organs. Am J Transplant 2017; 17(2): 328-335.

Li W, Nava RG, Bribriesco AC, Zinselmeyer BH, Spahn JH, Gelman AE et al. Intravital 2-photon imaging of leukocyte trafficking in beating heart. The Journal of clinical investigation 2012; 122(7): 2499-2508.

Kish DD, Gorbachev AV, Parameswaran N, Gupta N, Fairchild RL. Neutrophil expression of Fas ligand and perforin directs effector CD8 T cell infiltration into antigen-challenged skin. J Immunol 2012; 189(5): 2191-2202.

El-Sawy T, Belperio JA, Strieter RM, Remick DG, Fairchild RL. Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection. Circulation 2005; 112(3): 320-331.

Uchida Y, Freitas MC, Zhao D, Busuttil RW, Kupiec-Weglinski JW. The protective function of neutrophil elastase inhibitor in liver ischemia/reperfusion injury. Transplantation 2010; 89(9): 1050-1056.

Kim SY, Moon KA, Jo HY, Jeong S, Seon SH, Jung E et al. Anti-inflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation. Immunol Cell Biol 2012; 90(4): 441-448.

Kreisel D, Sugimoto S, Zhu J, Nava R, Li W, Okazaki M et al. Emergency granulopoiesis promotes neutrophil-dendritic cell encounters that prevent mouse lung allograft acceptance. Blood 2011; 118(23): 6172-6182.

Schlichting CL, Schareck WD, Kofler S, Weis M. Involvement of dendritic cells in allograft rejection new implications of dendritic cell-endothelial cell interactions. Mini reviews in medicinal chemistry 2007; 7(4): 423-428.

Morelli AE. Dendritic cells of myeloid lineage: the masterminds behind acute allograft rejection. Curr Opin Organ Transplant 2014; 19(1): 20-27.

Sivaganesh S, Harper SJ, Conlon TM, Callaghan CJ, Saeb-Parsy K, Negus MC et al. Copresentation of intact and processed MHC alloantigen by recipient dendritic cells enables delivery of linked help to alloreactive CD8 T cells by indirect-pathway CD4 T cells. J Immunol 2013; 190(11): 5829-5838.

Zhuang Q, Liu Q, Divito SJ, Zeng Q, Yatim KM, Hughes AD et al. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection. Nature communications 2016; 7: 12623.

Marin E, Cuturi MC, Moreau A. Tolerogenic Dendritic Cells in Solid Organ Transplantation: Where Do We Stand? Frontiers in immunology 2018; 9: 274.

Raimondi G, Thomson AW. Dendritic cells,tolerance and therapy of organ allograft rejection. Contributions to nephrology 2005; 146: 105-120.

Zhang Y, Shen S, Zhao G, Xu CF, Zhang HB, Luo YL et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials 2019; 217: 119302.

Salehi S, Reed EF. The divergent roles of macrophages in solid organ transplantation. Curr Opin Organ Transplant 2015; 20(4): 446-453.

Schmidt A, Sucke J, Fuchs-Moll G, Freitag P, Hirschburger M, Kaufmann A et al. Macrophages in experimental rat lung isografts and allografts: infiltration and proliferation in situ. J Leukoc Biol 2007; 81(1): 186-194.

Jose MD, Ikezumi Y, van Rooijen N, Atkins RC, Chadban SJ. Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation 2003; 76(7): 1015-1022.

dos Santos DC, de Andrade LG, de Carvalho MF, Moraes Neto FA, Viero RM. Mononuclear inflammatory infiltrate and microcirculation injury in acute rejection: role in renal allograft survival. Renal failure 2013; 35(5): 601-606.

Qi F, Adair A, Ferenbach D, Vass DG, Mylonas KJ, Kipari T et al. Depletion of cells of monocyte lineage prevents loss of renal microvasculature in murine kidney transplantation. Transplantation 2008; 86(9): 1267-1274.

Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017; 8: 1124.

Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant 2014; 20(6): 896-899.

van der Touw W, Bromberg JS. Natural killer cells and the immune response in solid organ transplantation. Am J Transplant 2010; 10(6): 1354-1358.

Benichou G, Yamada Y, Aoyama A, Madsen JC. Natural killer cells in rejection and tolerance of solid organ allografts. Curr Opin Organ Transplant 2011; 16(1): 47-53.

van der Touw W, Burrell B, Lal G, Bromberg JS. NK cells are required for costimulatory blockade induced tolerance to vascularized allografts. Transplantation 2012; 94(6): 575-584.

Beilke JN, Kuhl NR, Van Kaer L, Gill RG. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nature medicine 2005; 11(10): 1059-1065.

Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. The Journal of experimental medicine 2006; 203(8): 1851-1858.

Elieh Ali Komi D, Ribatti D. Mast cell-mediated mechanistic pathways in organ transplantation. Eur J Pharmacol 2019; 857: 172458.

Mortaz E, Amani S, Mumby S, Adcock IM, Movassaghi M, Folkerts J et al. Role of Mast Cells and Type 2 Innate Lymphoid (ILC2) Cells in Lung Transplantation. Journal of immunology research 2018; 2018: 2785971.

de Vries VC, Pino-Lagos K, Nowak EC, Bennett KA, Oliva C, Noelle RJ. Mast cells condition dendritic cells to mediate allograft tolerance. Immunity 2011; 35(4): 550-561.

de Vries VC, Wasiuk A, Bennett KA, Benson MJ, Elgueta R, Waldschmidt TJ et al. Mast cell degranulation breaks peripheral tolerance. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2009; 9(10): 2270-2280.

Ngo Nyekel F, Pacreau E, Benadda S, Msallam R, Abrink M, Pejler G et al. Mast Cell Degranulation Exacerbates Skin Rejection by Enhancing Neutrophil Recruitment. Front Immunol 2018; 9: 2690.

Bolton EM, Gracie JA, Briggs JD, Kampinga J, Bradley JA. Cellular requirements for renal allograft rejection in the athymic nude rat. The Journal of experimental medicine 1989; 169(6): 1931-1946.

Eteghadi A, Pak F, Ahmadpoor P, Jamali S, Karimi M, Yekaninejad MS et al. Th1, Th2, Th17 cell subsets in two different immunosuppressive protocols in renal allograft recipients (Sirolimus vs mycophenolate mofetil): A cohort study. International immunopharmacology 2019; 67: 319-325.

D’Elios MM, Josien R, Manghetti M, Amedei A, de Carli M, Cuturi MC et al. Predominant Th1 cell infiltration in acute rejection episodes of human kidney grafts. Kidney international 1997; 51(6): 1876-1884.

Ingulli E. Mechanism of cellular rejection in transplantation. Pediatric nephrology (Berlin, Germany) 2010; 25(1): 61-74.

Wang H, DeVries ME, Deng S, Khandaker MH, Pickering JG, Chow LH et al. The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nature medicine 2000; 6(5): 549-555.

Konieczny BT, Dai Z, Elwood ET, Saleem S, Linsley PS, Baddoura FK et al. IFN-gamma is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. Journal of immunology (Baltimore, Md : 1950) 1998; 160(5): 2059-2064.

Halloran PF, Afrouzian M, Ramassar V, Urmson J, Zhu LF, Helms LM et al. Interferon-gamma acts directly on rejecting renal allografts to prevent graft necrosis. The American journal of pathology 2001; 158(1): 215-226.

Markees TG, Phillips NE, Gordon EJ, Noelle RJ, Shultz LD, Mordes JP et al. Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4(+) T cells, interferon-gamma, and CTLA4. The Journal of clinical investigation 1998; 101(11): 2446-2455.

Sawitzki B, Kingsley CI, Oliveira V, Karim M, Herber M, Wood KJ. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. The Journal of experimental medicine 2005; 201(12): 1925-1935.

Goldman M, Le Moine A, Braun M, Flamand V, Abramowicz D. A role for eosinophils in transplant rejection. Trends in immunology 2001; 22(5): 247-251.

Nocera A, Tagliamacco A, De Palma R, Del Galdo F, Ferrante A, Fontana I et al. Cytokine mRNA expression in chronically rejected human renal allografts. Clinical transplantation 2004; 18(5): 564-570.

Zelenika D, Adams E, Mellor A, Simpson E, Chandler P, Stockinger B et al. Rejection of H-Y disparate skin grafts by monospecific CD4+ Th1 and Th2 cells: no requirement for CD8+ T cells or B cells. Journal of immunology (Baltimore, Md : 1950) 1998; 161(4): 1868-1874.

Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. Journal of immunology (Baltimore, Md : 1950) 2001; 166(6): 3789-3796.

Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, Lebecque S et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. Journal of the American Society of Nephrology : JASN 1998; 9(8): 1526-1534.

Tsaur I, Gasser M, Aviles B, Lutz J, Lutz L, Grimm M et al. Donor antigen-specific regulatory T-cell function affects outcome in kidney transplant recipients. Kidney international 2011; 79(9): 1005-1012.

van Besouw NM, Yan L, de Kuiper R, Klepper M, Reijerkerk D, Dieterich M et al. The Number of Donor-Specific IL-21 Producing Cells Before and After Transplantation Predicts Kidney Graft Rejection. Front Immunol 2019; 10: 748.

Deteix C, Attuil-Audenis V, Duthey A, Patey N, McGregor B, Dubois V et al. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol 2010; 184(9): 5344-5351.

Nakagiri T, Inoue M, Morii E, Minami M, Sawabata N, Utsumi T et al. Local IL-17 production and a decrease in peripheral blood regulatory T cells in an animal model of bronchiolitis obliterans. Transplantation 2010; 89(11): 1312-1319.

Burrell BE, Csencsits K, Lu G, Grabauskiene S, Bishop DK. CD8+ Th17 mediate costimulation blockade-resistant allograft rejection in T-bet-deficient mice. Journal of immunology (Baltimore, Md : 1950) 2008; 181(6): 3906-3914.

Healy DG, Watson RW, O’Keane C, Egan JJ, McCarthy JF, Hurley J et al. Neutrophil transendothelial migration potential predicts rejection severity in human cardiac transplantation. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 2006; 29(5): 760-766.

Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-1164.

Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression. Blood 2009; 114(18): 3727-3735.

Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009; 182(1): 259-273.

Corthay A. How do regulatory T cells work? Scandinavian journal of immunology 2009; 70(4): 326-336.

Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 2006; 212: 60-73.

Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. American journal of clinical oncology 2016; 39(1): 98-106.

Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of experimental medicine 2001; 194(5): 629-644.

Regateiro FS, Chen Y, Kendal AR, Hilbrands R, Adams E, Cobbold SP et al. Foxp3 expression is required for the induction of therapeutic tissue tolerance. Journal of immunology (Baltimore, Md : 1950) 2012; 189(8): 3947-3956.

Kulkarni N, Sonar SA, Lal G. Plasticity of Th17 and Tregs and its clinical importance as therapeutic target in inflammatory bowel disease. Indian Journal of Inflammation Research 2017; 1(1): R2.

Regateiro FS, Howie D, Nolan KF, Agorogiannis EI, Greaves DR, Cobbold SP et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-beta. European journal of immunology 2011; 41(10): 2955-2965.

Regateiro FS, Cobbold SP, Waldmann H. CD73 and adenosine generation in the creation of regulatory microenvironments. Clinical and experimental immunology 2013; 171(1): 1-7.

Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annual review of immunology 2001; 19: 683-765.

Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy--review of a new approach. Pharmacological reviews 2003; 55(2): 241-269.

Zelenika D, Adams E, Humm S, Graca L, Thompson S, Cobbold SP et al. Regulatory T cells overexpress a subset of Th2 gene transcripts. Journal of immunology (Baltimore, Md : 1950) 2002; 168(3): 1069-1079.

Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, Surh CD et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. The Journal of experimental medicine 2009; 206(4): 751-760.

Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation 2008; 86(4): 578-589.

Vlad G, Suciu-Foca N. Tolerogenic dendritic cells and induction of T suppressor cells in transplant recipients. Methods in molecular biology (Clifton, NJ) 2013; 1034: 359-371.

Peche H, Trinite B, Martinet B, Cuturi MC. Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2005; 5(2): 255-267.

Fu F, Li Y, Qian S, Lu L, Chambers F, Starzl TE et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 1996; 62(5): 659-665.

Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002; 100(1): 174-177.

Owen RD. IMMUNOGENETIC CONSEQUENCES OF VASCULAR ANASTOMOSES BETWEEN BOVINE TWINS. Science (New York, NY) 1945; 102(2651): 400-401.

Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970; 18(5): 723-737.

Palmer E, Naeher D. Affinity threshold for thymic selection through a T-cell receptor-co-receptor zipper. Nature reviews Immunology 2009; 9(3): 207-213.

Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harbor perspectives in biology 2012; 4(6).

Sitkovsky MV. T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends in immunology 2009; 30(3): 102-108.

Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 2002; 16(6): 759-767.

Barnes PJ. Corticosteroids: the drugs to beat. European journal of pharmacology 2006; 533(1-3): 2-14.

Hartono C, Muthukumar T, Suthanthiran M. Immunosuppressive drug therapy. Cold Spring Harbor perspectives in medicine 2013; 3(9): a015487.

Wood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation 2012; 93(1): 1-10.

Bretscher P, Cohn M. A theory of self-nonself discrimination. Science (New York, NY) 1970; 169(3950): 1042-1049.

Kinnear G, Jones ND, Wood KJ. Costimulation blockade: current perspectives and implications for therapy. Transplantation 2013; 95(4): 527-535.

Lee KP, Taylor C, Petryniak B, Turka LA, June CH, Thompson CB. The genomic organization of the CD28 gene. Implications for the regulation of CD28 mRNA expression and heterogeneity. Journal of immunology (Baltimore, Md : 1950) 1990; 145(1): 344-352.

Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. The Journal of experimental medicine 1994; 180(2): 631-640.

Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science (New York, NY) 1993; 261(5121): 609-612.

Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature immunology 2002; 3(11): 1097-1101.

Baliga P, Chavin KD, Qin L, Woodward J, Lin J, Linsley PS et al. CTLA4Ig prolongs allograft survival while suppressing cell-mediated immunity. Transplantation 1994; 58(10): 1082-1090.

Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2010; 10(3): 535-546.

Ochs HD, Hollenbaugh D, Aruffo A. The role of CD40L (gp39)/CD40 in T/B cell interaction and primary immunodeficiency. Seminars in immunology 1994; 6(5): 337-341.

Howard LM, Miller SD. Immunotherapy targeting the CD40/CD154 costimulatory pathway for treatment of autoimmune disease. Autoimmunity 2004; 37(5): 411-418.

Ferrer IR, Liu D, Pinelli DF, Koehn BH, Stempora LL, Ford ML. CD40/CD154 blockade inhibits dendritic cell expression of inflammatory cytokines but not costimulatory molecules. Journal of immunology (Baltimore, Md : 1950) 2012; 189(9): 4387-4395.

Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381(6581): 434-438.

Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. Journal of immunology (Baltimore, Md : 1950) 2002; 169(8): 4667-4673.

Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nature medicine 2000; 6(2): 114.

Pinelli DF, Wagener ME, Liu D, Yamniuk A, Tamura J, Grant S et al. An anti-CD154 domain antibody prolongs graft survival and induces Foxp3(+) iTreg in the absence and presence of CTLA-4 Ig. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2013; 13(11): 3021-3030.

Markees TG, Phillips NE, Noelle RJ, Shultz LD, Mordes JP, Greiner DL et al. Prolonged survival of mouse skin allografts in recipients treated with donor splenocytes and antibody to CD40 ligand. Transplantation 1997; 64(2): 329-335.

Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL et al. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10(1): 3495.

Sharma RK, Rai PK, Kumar A, Kumar P, Gupta A, Kher V et al. Role of preoperative donor-specific transfusion and cyclosporine in haplo-identical living related renal transplant recipients. Nephron 1997; 75(1): 20-24.

Ferrer IR, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(51): 20701-20706.

Benda B, Ljunggren HG, Peach R, Sandberg JO, Korsgren O. Co-stimulatory molecules in islet xenotransplantation: CTLA4Ig treatment in CD40 ligand-deficient mice. Cell transplantation 2002; 11(7): 715-720.

Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunological reviews 2009; 229(1): 152-172.

Howland KC, Ausubel LJ, London CA, Abbas AK. The roles of CD28 and CD40 ligand in T cell activation and tolerance. Journal of immunology (Baltimore, Md : 1950) 2000; 164(9): 4465-4470.

Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological reviews 2009; 229(1): 173-191.

Demirci G, Amanullah F, Kewalaramani R, Yagita H, Strom TB, Sayegh MH et al. Critical role of OX40 in CD28 and CD154-independent rejection. Journal of immunology (Baltimore, Md : 1950) 2004; 172(3): 1691-1698.

Vu MD, Clarkson MR, Yagita H, Turka LA, Sayegh MH, Li XC. Critical, but conditional, role of OX40 in memory T cell-mediated rejection. Journal of immunology (Baltimore, Md : 1950) 2006; 176(3): 1394-1401.

Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 1999; 402(6763): 827-832.

McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. Journal of immunology (Baltimore, Md : 1950) 2000; 165(9): 5035-5040.

Harada H, Salama AD, Sho M, Izawa A, Sandner SE, Ito T et al. The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. The Journal of clinical investigation 2003; 112(2): 234-243.

Shariff H, Greenlaw RE, Meader L, Gardner N, Yagita H, Coccia M et al. Role of the Fc region in CD70-specific antibody effects on cardiac transplant survival. Transplantation 2011; 92(11): 1194-1201.

Shao W, Yan G, Lin Y, Chen J, Dai H, Wang F et al. CD44/CD70 blockade and anti-CD154/LFA-1 treatment synergistically suppress accelerated rejection and prolong cardiac allograft survival in mice. Scandinavian journal of immunology 2011; 74(5): 430-437.

Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. The Journal of experimental medicine 1997; 186(1): 47-55.

Nicolls MR, Coulombe M, Yang H, Bolwerk A, Gill RG. Anti-LFA-1 therapy induces long-term islet allograft acceptance in the absence of IFN-gamma or IL-4. Journal of immunology (Baltimore, Md : 1950) 2000; 164(7): 3627-3634.

Kitchens WH, Haridas D, Wagener ME, Song M, Kirk AD, Larsen CP et al. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2012; 12(1): 69-80.

Sandner SE, Clarkson MR, Salama AD, Sanchez-Fueyo A, Domenig C, Habicht A et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo. Journal of immunology (Baltimore, Md : 1950) 2005; 174(6): 3408-3415.

Page EK, Dar WA, Knechtle SJ. Tolerogenic therapies in transplantation. Frontiers in immunology 2012; 3: 198.

Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M et al. Identification of a B cell signature associated with renal transplant tolerance in humans. The Journal of clinical investigation 2010; 120(6): 1836-1847.

Chesneau M, Michel L, Degauque N, Brouard S. Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol 2013; 4: 497

Lal G, Kulkarni N, Nakayama Y, Singh AK, Sethi A, Burrell BE et al. IL-10 from marginal zone precursor B cells controls the differentiation of Th17, Tfh and Tfr cells in transplantation tolerance. Immunology letters 2016; 170: 52-63.

Lal G, Nakayama Y, Sethi A, Singh AK, Burrell BE, Kulkarni N et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation 2015; 99(9): 1817-1828.

Wehmeier C, Karahan GE, Krop J, de Vaal Y, Langerak-Langerak J, Binet I et al. Donor-specific B cell memory in alloimmunized kidney transplant recipients - first clinical application of a novel method. Transplantation 2019.

Kamburova EG, Gruijters ML, Kardol-Hoefnagel T, Wisse BW, Joosten I, Allebes WA et al. Antibodies against ARHGDIB are associated with long-term kidney graft loss. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2019.

Riquelme P, Tomiuk S, Kammler A, Fandrich F, Schlitt HJ, Geissler EK et al. IFN-gamma-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Molecular therapy : the journal of the American Society of Gene Therapy 2013; 21(2): 409-422.

Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature reviews Immunology 2004; 4(10): 762-774.

Zecher D, Li Q, Oberbarnscheidt MH, Demetris AJ, Shlomchik WD, Rothstein DM et al. NK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells. Journal of immunology (Baltimore, Md : 1950) 2010; 184(12): 6649-6657.

Thomson AW, Ezzelarab MB. Regulatory dendritic cells: profiling, targeting, and therapeutic application. Current opinion in organ transplantation 2018; 23(5): 538-545.

Wang Q, Zhang M, Ding G, Liu Y, Sun Y, Wang J et al. Anti-ICAM-1 antibody and CTLA-4Ig synergistically enhance immature dendritic cells to induce donor-specific immune tolerance in vivo. Immunology letters 2003; 90(1): 33-42.

Moreau A, Varey E, Beriou G, Hill M, Bouchet-Delbos L, Segovia M et al. Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Frontiers in immunology 2012; 3: 218.

Ferrer IR, Wagener ME, Song M, Ford ML. CD154 blockade alters innate immune cell recruitment and programs alloreactive CD8+ T cells into KLRG-1(high) short-lived effector T cells. PloS one 2012; 7(7): e40559.

Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C et al. Pillars article: long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996. 381: 434-438. 1996. Journal of immunology (Baltimore, Md : 1950) 2011; 186(5): 2693-2697.

Ha J, Bingaman AW, Durham MM, Pearson TC, Larsen CP. Aggressive skin allograft rejection in CD28-/- mice independent of the CD40/CD40L costimulatory pathway. Transplant immunology 2001; 9(1): 13-17.

Graca L, Honey K, Adams E, Cobbold SP, Waldmann H. Cutting edge: anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. Journal of immunology (Baltimore, Md : 1950) 2000; 165(9): 4783-4786.

Honey K, Cobbold SP, Waldmann H. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression. Journal of immunology (Baltimore, Md : 1950) 1999; 163(9): 4805-4810.

Kim EY, Lee EN, Lee J, Park HJ, Chang CY, Jung DY et al. Two-signal blockade with anti-CD45RB and anti-CD154 monoclonal antibodies inhibits graft rejection via CD4-dependent mechanisms in allogeneic skin transplantation. Experimental & molecular medicine 2006; 38(3): 284-294.

Rothstein DM, Livak MF, Kishimoto K, Ariyan C, Qian HY, Fecteau S et al. Targeting signal 1 through CD45RB synergizes with CD40 ligand blockade and promotes long term engraftment and tolerance in stringent transplant models. Journal of immunology (Baltimore, Md : 1950) 2001; 166(1): 322-3

Downloads

Published

2019-09-09

Issue

Section

Articles