Indian Journal of Inflammation Research

"Understanding Inflammation, Enhancing Health"

Welcome to the Indian Journal of Inflammation Research (IJIR), where knowledge fuels healing. Our platform provides a vital hub for researchers, clinicians, and policymakers to explore the multifaceted aspects of inflammation and its impact on human health. Delve into our curated selection of articles, studies, and reviews aimed at deepening our understanding of inflammation and developing innovative strategies for prevention and treatment.

Submit Article

Factors affecting the pathophysiology of sepsis, an inflammatory disorder: Key roles of oxidative and nitrosative stress

Authors

  • Shikha Yadav Department of Biochemistry, Indian Institute of Science, Bangalore-560012
  • Taru Verma Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012
  • Avik Chattopadhyay Department of Biochemistry, Indian Institute of Science, Bangalore-560012
  • Dipankar Nandi 1Department of Biochemistry, Indian Institute of Science, Bangalore-560012| 2Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012| 3Centre for Infectious Disease Research, Indian Institute of Science, Bangalore-560012

Keywords:

Sepsis, reactive oxygen species, reactive nitrogen species, nitric oxide synthase, antioxidants, mitochondrial dysfunction

Abstract

Sepsis, one of the primary causes of mortality in the intensive care units, occurs due to the host’s dysregulated immune responses to an infection. Consequently, persistent systemic inflammation along with suppressed adaptive immunity ensues, resulting in deranged metabolism, recurrent infections, tissue damage and multi-organ failure. The uncontrolled oxidative stress mediated by the imbalance between the generation of reactive oxygen species and their neutralization by the host’s antioxidant system is involved in inflammation-induced damage. The profound deleterious effects in the host range from mitochondrial dysfunction and endothelial damage to reduced cardiac output. Therefore, antioxidant therapy was actively considered to have therapeutic benefits in sepsis patients. Although some success has been obtained with the use of antioxidants in sepsis patients, considerable ambiguity persists that prevents their routine use. Another key molecule that may dictate the outcome and prognosis during sepsis is nitric oxide (NO). This pleiotropic molecule plays a central role in inflammation and in leukocyte recruitment at the site of inflammation. NO is synthesized by three different isoforms of nitric oxide synthases (NOS) and significantly high and sustained levels of NOS2 have been reported in sepsis. Abundant literature supports the protective roles of NO during sepsis; however, there is uncertainty in various reports. The administration of NO donors in clinical trials for sepsis treatment has encountered limited success. NO, during sepsis, acts like a double-edged sword: increased NO levels can result in hypotension, whereas reduced levels contribute to poor organ perfusion and an elevated susceptibility to infection. Therefore, several parameters need to be evaluated, while considering the potential of antioxidant and NO-based therapy during sepsis.

References

Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al. Role of Antioxidants and Natural Products in Inflammation. Oxidative medicine and cellular longevity. 2016;2016:5276130. Epub 2016/11/03.

Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771-6. Epub 2010/03/23.

Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American journal of pathology. 2007;171(3):715-27. Epub 2007/07/21.

Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nature reviews Drug discovery. 2016;15(8):551-67. Epub 2016/03/30.

Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-52. Epub 2002/12/20.

Weber A, Boege Y, Reisinger F, Heikenwalder M. Chronic liver inflammation and hepatocellular carcinoma: persistence matters. Swiss medical weekly. 2011;141:w13197. Epub 2011/05/11.

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193(3):259-72. Epub 2015/09/29.

Chatterjee S, Bhattacharya M, Todi SK. Epidemiology of Adult-population Sepsis in India: A Single Center 5 Year Experience. Indian journal of critical care medicine : peer-reviewed, official publication of Indian Society of Critical Care Medicine. 2017;21(9):573-7. Epub 2017/10/04.

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862-74. Epub 2013/11/16.

Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330-53. Epub 2016/10/27.

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10. Epub 2016/02/24.

von Bernuth H, Puel A, Ku CL, Yang K, Bustamante J, Chang HH, et al. Septicemia without sepsis: inherited disorders of nuclear factor-kappa B-mediated inflammation. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005;41 Suppl 7:S436-9. Epub 2005/10/21.

Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature. 2006;440(7087):1064-8. Epub 2006/04/21.

Yadav S, Pathak S, Sarikhani M, Majumdar S, Ray S, Chandrasekar BS, et al. Nitric oxide synthase 2 enhances the survival of mice during Salmonella Typhimurium infection-induced sepsis by increasing reactive oxygen species, inflammatory cytokines and recruitment of neutrophils to the peritoneal cavity. Free radical biology & medicine. 2018;116:73-87. Epub 2018/01/09.

Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Critical care. 2010;14(1):R15. Epub 2010/02/11.

Dolin HH, Papadimos TJ, Stepkowski S, Chen X, Pan ZK. A Novel Combination of Biomarkers to Herald the Onset of Sepsis Prior to the Manifestation of Symptoms. Shock. 2018;49(4):364-70. Epub 2017/10/11.

Faix JD. Biomarkers of sepsis. Critical reviews in clinical laboratory sciences. 2013;50(1):23-36. Epub 2013/03/14.

Kraft R, Herndon DN, Finnerty CC, Cox RA, Song J, Jeschke MG. Predictive Value of IL-8 for Sepsis and Severe Infections After Burn Injury: A Clinical Study. Shock. 2015;43(3):222-7. Epub 2014/12/17.

Hofer N, Zacharias E, Muller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25-36. Epub 2012/04/18.

Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 1993;341(8844):515-8. Epub 1993/02/27.

Streimish I, Bizzarro M, Northrup V, Wang C, Renna S, Koval N, et al. Neutrophil CD64 as a diagnostic marker in neonatal sepsis. The Pediatric infectious disease journal. 2012;31(7):777-81. Epub 2012/04/07.

Monneret G, Venet F. Monocyte HLA-DR in sepsis: shall we stop following the flow? Critical care. 2014;18(1):102. Epub 2014/01/08

Shao R, Fang Y, Yu H, Zhao L, Jiang Z, Li CS. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Critical care. 2016;20(1):124. Epub 2016/05/10.

Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxidants & redox signaling. 2019. Epub 2018/11/08.

Bednarz-Misa I, Mierzchala-Pasierb M, Lesnik P, Placzkowska S, Kedzior K, Gamian A, et al. Cardiovascular Insufficiency, Abdominal Sepsis, and Patients’ Age Are Associated with Decreased Paraoxonase-1 (PON1) Activity in Critically Ill Patients with Multiple Organ Dysfunction Syndrome (MODS). Disease markers. 2019;2019:1314623. Epub 2019/03/20.

Perner A, Gordon AC, Angus DC, Lamontagne F, Machado F, Russell JA, et al. The intensive care medicine research agenda on septic shock. Intensive care medicine. 2017;43(9):1294-305. Epub 2017/05/14.

Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England journal of medicine. 2001;344(10):699-709. Epub 2001/03/10.

Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. The New England journal of medicine. 2012;366(22):2055-64. Epub 2012/05/24.

Ogilvie AC, Groeneveld AB, Straub JP, Thijs LG. Plasma lipid peroxides and antioxidants in human septic shock. Intensive Care Med. 1991;17(1):40-4. Epub 1991/01/01.

Santos SS, Brunialti MK, Rigato O, Machado FR, Silva E, Salomao R. Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock. 2012;38(1):18-23. Epub 2012/05/12.

Jones DP. Radical-free biology of oxidative stress. American journal of physiology Cell physiology. 2008;295(4):C849-68. Epub 2008/08/08.

Prauchner CA. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries. 2017;43(3):471-85. Epub 2016/12/31.

Andrades M, Ritter C, Moreira JC, Dal-Pizzol F. Oxidative parameters differences during non-lethal and lethal sepsis development. The Journal of surgical research. 2005;125(1):68-72. Epub 2005/04/20.

Galley HF. Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit Care. 2010;14(4):230. Epub 2010/09/02.

Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17(1):219-37. Epub 2001/02/24.

Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Critical care. 2014;18(5):503. Epub 2014/11/15.

Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. The New England journal of medicine. 2001;345(8):588-95. Epub 2001/09/01.

Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Critical care medicine. 2007;35(6):1599-608. Epub 2007/04/25.

Rudyk O, Phinikaridou A, Prysyazhna O, Burgoyne JR, Botnar RM, Eaton P. Protein kinase G oxidation is a major cause of injury during sepsis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24):9909-13. Epub 2013/05/30.

Levy RJ, Piel DA, Acton PD, Zhou R, Ferrari VA, Karp JS, et al. Evidence of myocardial hibernation in the septic heart. Critical care medicine. 2005;33(12):2752-6. Epub 2005/12/15.

Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. The Journal of experimental medicine. 2011;208(3):417-20. Epub 2011/03/02.

Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. British journal of anaesthesia. 2003;90(2):221-32. Epub 2003/01/23.

Abraham E. Nuclear factor-kappaB and its role in sepsis-associated organ failure. The Journal of infectious diseases. 2003;187 Suppl 2:S364-9. Epub 2003/06/07.

den Hertog J, Groen A, van der Wijk T. Redox regulation of protein-tyrosine phosphatases. Archives of biochemistry and biophysics. 2005;434(1):11-5. Epub 2005/01/05.

Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell research. 2011;21(1):103-15. Epub 2010/12/29.

Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. The Journal of clinical investigation. 2003;112(4):460-7. Epub 2003/08/20.

Victor VM, Rocha M, Esplugues JV, De la Fuente M. Role of free radicals in sepsis: antioxidant therapy. Current pharmaceutical design. 2005;11(24):3141-58. Epub 2005/09/24.

Vallejos A, Olivares P, Varela D, Echeverria C, Cabello-Verrugio C, Perez-Leighton C, et al. Preventive Leptin Administration Protects Against Sepsis Through Improving Hypotension, Tachycardia, Oxidative Stress Burst, Multiple Organ Dysfunction, and Increasing Survival. Frontiers in physiology. 2018;9:1800. Epub 2019/01/09.

Escobar DA, Botero-Quintero AM, Kautza BC, Luciano J, Loughran P, Darwiche S, et al. Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. The Journal of surgical research. 2015;194(1):262-72. Epub 2014/12/03.

Vaez H, Rameshrad M, Najafi M, Barar J, Barzegari A, Garjani A. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. European journal of pharmacology. 2016;772:115-23. Epub 2015/12/29.

Leite HP, de Lima LF. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? Journal of thoracic disease. 2016;8(7):E552-7. Epub 2016/08/09.

Donnino MW, Carney E, Cocchi MN, Barbash I, Chase M, Joyce N, et al. Thiamine deficiency in critically ill patients with sepsis. Journal of critical care. 2010;25(4):576-81. Epub 2010/07/22.

Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study. Critical care medicine. 2016;44(2):360-7. Epub 2016/01/16.

Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151(6):1229-38. Epub 2016/12/13.

Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2005;19(9):1196-8. Epub 2005/05/03.

Petronilho F, Florentino D, Danielski LG, Vieira LC, Martins MM, Vieira A, et al. Alpha-Lipoic Acid Attenuates Oxidative Damage in Organs After Sepsis. Inflammation. 2016;39(1):357-65. Epub 2015/10/04.

Wilson JX. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. BioFactors. 2009;35(1):5-13. Epub 2009/03/26.

Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical care medicine. 1996;24(3):392-7. Epub 1996/03/01.

Jefferies H, Coster J, Khalil A, Bot J, McCauley RD, Hall JC. Glutathione. ANZ journal of surgery. 2003;73(7):517-22. Epub 2003/07/17.

Hollins DL, Suliman HB, Piantadosi CA, Carraway MS. Glutathione regulates susceptibility to oxidant-induced mitochondrial DNA damage in human lymphocytes. Free radical biology & medicine. 2006;40(7):1220-6. Epub 2006/03/21.

Ortolani O, Conti A, De Gaudio AR, Moraldi E, Cantini Q, Novelli G. The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. American journal of respiratory and critical care medicine. 2000;161(6):1907-11. Epub 2000/06/14.

Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256-68. Epub 2012/03/03.

Forceville X, Vitoux D, Gauzit R, Combes A, Lahilaire P, Chappuis P. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Critical care medicine. 1998;26(9):1536-44. Epub 1998/09/29.

Manzanares W, Biestro A, Galusso F, Torre MH, Manay N, Pittini G, et al. Serum selenium and glutathione peroxidase-3 activity: biomarkers of systemic inflammation in the critically ill? Intensive care medicine. 2009;35(5):882-9. Epub 2008/11/27.

Alhazzani W, Jacobi J, Sindi A, Hartog C, Reinhart K, Kokkoris S, et al. The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Critical care medicine. 2013;41(6):1555-64. Epub 2013/04/17.

Bogdan C. Nitric oxide and the immune response. Nature immunology. 2001;2(10):907-16. Epub 2001/09/29.

Hickey MJ. Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment. Clinical science. 2001;100(1):1-12. Epub 2000/12/15.

Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends in immunology. 2015;36(3):161-78. Epub 2015/02/18.

Lange M, Connelly R, Traber DL, Hamahata A, Nakano Y, Esechie A, et al. Time course of nitric oxide synthases, nitrosative stress, and poly(ADP ribosylation) in an ovine sepsis model. Critical care. 2010;14(4):R129. Epub 2010/07/07.

Scott JA, Mehta S, Duggan M, Bihari A, McCormack DG. Functional inhibition of constitutive nitric oxide synthase in a rat model of sepsis. American journal of respiratory and critical care medicine. 2002;165(10):1426-32. Epub 2002/05/23.

Cobb JP. Use of nitric oxide synthase inhibitors to treat septic shock: the light has changed from yellow to red. Critical care medicine. 1999;27(5):855-6. Epub 1999/06/11.

Tsukahara Y, Morisaki T, Kojima M, Uchiyama A, Tanaka M. iNOS expression by activated neutrophils from patients with sepsis. ANZ journal of surgery. 2001;71(1):15-20. Epub 2001/02/13.

Christensen RD, Rothstein G. Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr. 1980;96(2):316-8. Epub 1980/02/01.

Matute-Bello G, Frevert CW, Kajikawa O, Skerrett SJ, Goodman RB, Park DR, et al. Septic shock and acute lung injury in rabbits with peritonitis: failure of the neutrophil response to localized infection. American journal of respiratory and critical care medicine. 2001;163(1):234-43. Epub 2001/02/24.

Alves-Filho JC, Spiller F, Cunha FQ. Neutrophil paralysis in sepsis. Shock. 2010;34 Suppl 1:15-21. Epub 2010/08/28.

Weiss SJ. Tissue destruction by neutrophils. The New England journal of medicine. 1989;320(6):365-76. Epub 1989/02/09.

Wang L, Taneja R, Razavi HM, Law C, Gillis C, Mehta S. Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock. 2012;37(5):539-47. Epub 2012/03/07.

Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha Fde Q. Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric oxide : biology and chemistry. 2003;9(3):153-64. Epub 2004/01/21.

Sparkman L, Boggaram V. Nitric oxide increases IL-8 gene transcription and mRNA stability to enhance IL-8 gene expression in lung epithelial cells. American journal of physiology Lung cellular and molecular physiology. 2004;287(4):L764-73. Epub 2004/06/01.

Lamontagne F, Meade M, Ondiveeran HK, Lesur O, Fox-Robichaud AE. Nitric oxide donors in sepsis: a systematic review of clinical and in vivo preclinical data. Shock. 2008;30(6):653-9. Epub 2008/05/24.

Dal-Secco D, DalBo S, Lautherbach NES, Gava FN, Celes MRN, Benedet PO, et al. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase. American journal of physiology Heart and circulatory physiology. 2017;313(1):H149-H63. Epub 2017/05/21.

Lupp C, Baasner S, Ince C, Nocken F, Stover JF, Westphal M. Differentiated control of deranged nitric oxide metabolism: a therapeutic option in sepsis? Critical care. 2013;17(3):311. Epub 2013/06/12.

Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, et al. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991;214(5):621-6. Epub 1991/11/01.

Wong HR, Carcillo JA, Burckart G, Kaplan SS. Nitric oxide production in critically ill patients. Arch Dis Child. 1996;74(6):482-9. Epub 1996/06/01.

Wolkow PP. Involvement and dual effects of nitric oxide in septic shock. Inflamm Res. 1998;47(4):152-66. Epub 1998/06/17.

Bhagat K, Hingorani AD, Palacios M, Charles IG, Vallance P. Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovascular research. 1999;41(3):754-64. Epub 1999/08/06.

Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med. 1999;27(5):913-22. Epub 1999/06/11.

Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32(1):21-30. Epub 2004/01/07.

Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360(9343):1395-6. Epub 2002/11/09.

Winkler MS, Kluge S, Holzmann M, Moritz E, Robbe L, Bauer A, et al. Markers of nitric oxide are associated with sepsis severity: an observational study. Critical care. 2017;21(1):189. Epub 2017/07/16.

Downloads

Published

2019-06-05

Issue

Section

Articles